Table of Contents In the last article in the series, we migrated the passes we had written to use the tablegen code generation framework. That was a preface to using tablegen to define dialects.
Table of Contents In the last article in the series, we migrated the passes we had written to use the tablegen code generation framework. That was a preface to using tablegen to define dialects.
Table of Contents In the last article in this series, we defined some custom lowering passes that modified an MLIR program. Notably, we accomplished that by implementing the required interfaces of the MLIR API directly. This is not the way that most MLIR developers work. Instead, they use a code generation tool called tablegen to generate boilerplate for them, and then only add the implementation methods that are custom to their work.
Table of Contents This series is an introduction to MLIR and an onboarding tutorial for the HEIR project. Last time we saw how to run and test a basic lowering. This time we will write some simple passes to illustrate the various parts of the MLIR API and the pass infrastructure.
Table of Contents Last time, we covered a Bazel build system setup for an MLIR project. This time we’ll give an overview of a simple lowering and show how end-to-end tests work in MLIR. All of the code for this article is contained in this pull request on GitHub, and the commits are nicely organized and quite readable. Two of the central concepts in MLIR are dialects and lowerings.
Table of Contents As we announced recently, my team at Google has started a new effort to build production-worthy engineering tools for Fully Homomorphic Encryption (FHE). One focal point of this, and one which I’ll be focusing on as long as Google is willing to pay me to do so, is building out a compiler toolchain for FHE in the MLIR framework (Multi-Level Intermediate Representation). The project is called Homomorphic Encryption Intermediate
Today my team at Google published an article on Google’s Developers Blog with some updates on what we’ve been doing with fully homomorphic encryption (FHE). There’s fun stuff in there, including work on video processing FHE, compiling ML models to FHE, an FHE implementation for TPUs, and improvements to the compiler I wrote about earlier this year.
Before I discovered math, I was a first year undergrad computer science student taking Electrical Engineering 101. The first topic I learned was what bits and boolean gates are, and the second was the two’s complement representation of a negative n-bit integer. At the time two’s complement seemed to me like a bizarre quirk of computer programming, with minutiae you just had to memorize.
It’s April Cools again. For a few summers in high school and undergrad, I was a day camp counselor. I’ve written before about how it helped me develop storytelling skills, but recently I thought of it again because, while I was cleaning out a closet full of old junk, I happened upon a bag of embroidery thread.
In this article I’ll derive a trick used in FHE called sample extraction. In brief, it allows one to partially convert a ciphertext in the Ring Learning With Errors (RLWE) scheme to the Learning With Errors (LWE) scheme. Here are some other articles I’ve written about other FHE building blocks, though they are not prerequisites for this article.
Back in May of 2022 I transferred teams at Google to work on Fully Homomorphic Encryption (newsletter announcement). Since then I’ve been working on a variety of projects in the space, including being the primary maintainer on github.com/google/fully-homomorphic-encryption, which is an open source FHE compiler for C++. This article will be an introduction to how to use it to compile programs to FHE, as well as a quick overview of its internals.
This article was written by my colleague, Cathie Yun. Cathie is an applied cryptographer and security engineer, currently working with me to make fully homomorphic encryption a reality at Google. She’s also done a lot of cool stuff with zero knowledge proofs. In previous articles, we’ve discussed techniques used in Fully Homomorphic Encryption (FHE) schemes.