Computer and Information SciencesGhost

Research Graph

Research Graph
Research Graph
Home PageRSS Feed
language
Artificial-intelligenceLarge-language-modelsKnowledge-graphComputer and Information Sciences
Published
Author Wenyi Pi

Enhancing Open-Domain Conversational Question Answering with Knowledge-Enhanced Models and Knowledge Graphs How knowledge-enhanced language models and knowledge graphs are advancing open-domain conversational question answering Author: Wenyi Pi (ORCID: 0009-0002-2884-2771 ) When searching for information on the website, it is common to come across a flood of

Generative-ai-toolsArtificial-intelligenceLarge-language-modelsComputer-visionComputer and Information Sciences
Published

Efficient creation of a stoplight report with data dashboard images Author: Yunzhong Zhang (ORCID: 0009–0002–8177–419X) Comparing data dashboards is crucial for understanding trends and performance differences. Traditionally, this task required manual effort, which was slow and sometimes inaccurate. Now, thanks to OpenAI’s GPT-4 with Vision (GPT-4V), we are able to automate and improve this process.

Large-language-modelsKnowledge-graphLlmAugmented-generationComputer and Information Sciences
Published

An Introduction to Retrieval Augmented Generation (RAG) and Knowledge Graph Author Qingqin Fang (ORCID: 0009–0003–5348–4264) Introduction Large Language Models (LLMs) have transformed the landscape of natural language processing, demonstrating exceptional proficiency in generating text that closely resembles human language.

Retrieval-augmentedLlmArtificial-intelligenceRetrieval-generationComputer and Information Sciences
Published

Improving the performance of Large Language Models Author Dhruv Gupta (ORCID: 0009-0004-7109-5403) ChatGPT, which first came out in late 2022, took the world by storm. Since then, various LLM models and LLM based products such as Meta’s Llama and Google’s Gemini have emerged, demonstrating the power of LLMs.

Retrieval-generationLlmRetrieval-augmentedArtificial-intelligenceComputer and Information Sciences
Published
Author Wenyi Pi

How to efficiently retrieve information for different applications Author Wenyi Pi (ORCID: 0009-0002-2884-2771) This article aims to explore various ways in which Retrieval-Augmented Generation (RAG) can be utilised to retrieve information and generate responses effectively within the dialogue system. The rationale behind utilising RAG as well as potential ways in which it can be employed effectively will be covered.