Chemical SciencesWordPress

Henry Rzepa's Blog

Henry Rzepa's Blog
Chemistry with a twist
Home PageAtom Feed
language
Reaction MechanismCovalent SystemsFirst ProfessorFree EnergyImperial CollegeChemical Sciences
Published

The diazo-coupling reaction dates back to the 1850s (and a close association with Imperial College via the first professor of chemistry there, August von Hofmann) and its mechanism was much studied in the heyday of physical organic chemistry.[cite]10.1021/ja00830a009[/cite] Nick Greeves, purveyor of the excellent ChemTube3D site, contacted me about the transition state (I have commented previously on this aspect of aromatic

Reaction MechanismChemical Sciences
Published

A staple of introductory undergraduate teaching in organic chemistry is Markovnikov’s rule, which states: “ the addition of a protic acid HX to an alkene results in the acid hydrogen (H) becoming attached to the carbon with fewer alkyl substituents and the halide (X) group to the carbon with more alkyl substituents ”. Shortly thereafter, students are exposed to the “anti-Markovnikov” addition of borane to e.g.

PericyclicReaction MechanismPotential Energy SurfaceChemical Sciences
Published

The potential energy surface for a molecule tells us about how it might react. These surfaces have been charted for thousands of reactions using quantum mechanics, and their basic features are thought to be well understood. Coming across an entirely new feature is rare. So what do you make of the following? The reaction is shown above[cite]10.1039/P19920001709 [/cite], and on the face of it, it looks like a normal pericyclic cascade.

GeneralInteresting ChemistryChemical Sciences
Published

This is the time of year when I deliver two back-2-back lecture courses, and yes I do update and revise the content! I am always on the look-out for nice new examples that illustrate how concepts and patterns in chemistry can be joined up to tell a good story. My attention is currently on conformational analysis;

Interesting ChemistryPericyclicReaction MechanismChemical Sciences
Published

A game one can play with pericyclic reactions is to ask students to identify what type a given example is. So take for example the reaction below. The alternatives are: A cyclo-elimination reaction (red arrows). Two concurrent electrocyclic ring openings (blue and magenta arrows) Two consecutive electrocyclic ring openings Or could it be a hybrid with characteristics of both the first two?

PericyclicReaction MechanismChemical Sciences
Published

As my previous post hints, I am performing my annual spring-clean of lecture notes on pericyclic reactions. Such reactions, and their stereochemistry, are described by a set of selection rules . I am always on the lookout for a simple example which can most concisely summarise these rules. The (hypothetical) one shown below I think nicely achieves this, and raises some interesting issues in the process.

Curly ArrowsGeneralReaction MechanismChemical Sciences
Published

I have several times used arrow pushing on these blogs. But since the rules for this convention appear to be largely informal, and there appears to be no definitive statement of them, I thought I would try to produce this for our students. This effort is here shared on my blog. It is what I refer to as the standard version; an advanced version is in preparation. Such formality might come as a surprise to some;

Chemical ITChemical DataChemical SemanticsChemical Structure DiagramsChemical StructuresChemical Sciences
Published

This is one of those topics that seems to crop up every three years or so. Since then, new versions of operating systems, new versions of programs, mobile devices and perhaps some progress?  Right, I will briefly recapitulate. Chemical structure diagrams are special; they contain chemical semantics (what an atom is, what a bond is, stereochemistry, charges, etc). One needs special programs to represent this. Take two well-known ones.