Chemical SciencesWordPress

Henry Rzepa's Blog

Henry Rzepa's Blog
Chemistry with a twist
Home PageAtom Feed
language
Published

I was intrigued by one aspect of the calculated transition state for di-imide reduction of an alkene; the calculated NMR shieldings indicated an diatropic ring current at the centre of the ring, but very deshielded shifts for the hydrogen atoms being transferred. This indicated, like most thermal pericyclic reactions, an aromatic transition state. Well, one game one can play with this sort of reaction is to add a double bond.

Published

Not a few posts on this blog dissect the mechanisms of well known text-book reactions. But one reaction type where there are few examples on these pages are reductions. These come in three types; using electrons, using a hydride anion and using di-hydrogen. Here I first take a closer look at the third type, and in particular di-hydrogen as delivered from di-imide.

Published

More than 60 million molecules are known, and many are fascinating. But beauty is in the eye of the beholder. Thus it was that I came across the attached molecule[cite]10.1021/ja982065w[/cite]. It struck me immediately as, well, beautiful! GOCTOH. Click for 3D. This is one that comes to life in 3D and I strongly urge you to inspect it as such by clicking on the above. Why is it so interesting?

Published

Thalidomide is a chiral molecule, which was sold in the 1960s as a sedative in its (S,R)-racemic form. The tragedy was that the (S)-isomer was tetragenic, and only the (R) enantiomer acts as a sedative. What was not appreciated at the time is that interconversion of the (S)- and (R) forms takes place quite quickly in aqueous media.

Published

The text books say that cyclohexenone A will react with a Grignard reagent by delivery of an alkyl (anion) to the carbon of the carbonyl ( 1,2-addition ) but if dimethyl lithium cuprate is used, a conjugate 1,4-addition proceeds, to give the product B shown below.

Published

When methyl manganese pentacarbonyl is treated with carbon monoxide in e.g. di-n-butyl ether, acetyl manganese pentacarbonyl is formed. This classic experiment conducted by Cotton (of quadruple bond fame) and Calderazzo in 1962[cite]10.1021/ic50001a008[/cite] dates from an era when chemists conducted extensive kinetic analyses to back up any mechanistic speculations. Their suggested transition state is outlined below.

Published

Following on from our first mechanistic reality check, we now need to verify how product A might arise in the mechanism shown below, starting from B . This pathway backtracks the original one in reversing the final arrow of that process (shown in red in previous post and in magenta here for the arrow in reverse), to go uphill in energy to reach the secondary (unstabilised) carbocation.

Published

The reaction described in the previous post (below) is an unusual example of nucleophilic attack at an sp 2 -carbon centre, reportedly resulting in inversion of configuration[cite]10.1021/ja00765a062[/cite]. One can break it down to a sequence of up to eight individual steps, which makes teaching it far easier. But how real is that sequence?

Published

The reaction below plays a special role in my career. As a newly appointed researcher (way back now), I was asked to take tutorial groups for organic chemistry as part of my duties. I sat down to devise a suitable challenge for the group, and came upon the following reaction[cite]10.1021/ja00765a062[/cite]. I wrote it down on page 2 of my tutorial book, which I still have.