This is one of those posts where the title pretty much says it all, but here’s the detailed version.
This is one of those posts where the title pretty much says it all, but here’s the detailed version.
Here’s a nice early holiday present for me: 51 weeks after our first paper together, I’m on another one with Tito Aureliano and colleagues: Aureliano, T., Ghilardi, A.M., Müller, R.T., Kerber, L., Pretto, F.A., Fernandes, M.A.,Ricardi-Branco, F., and Wedel, M.J. 2022.
For reasons that would be otiose, at this moment, to rehearse, I recently found myself in need of a hemisected turkey cervical. Happily, I own five skeletonised turkey necks, so it was with me the work of a moment to select a candidate. But now what? How to hemisect it? We have
I was looking more closely at the turkey skeleton from my recent post, and zeroed in on the last two dorsal (= thoracic) vertebrae. They articulate very well with each other and with the first vertebra of the sacrum, with the centra and zygapophyses both locking in so that there can only have been very little if any movement between them in life.
Naturally I was grateful when Cary invited me to be part of the team working on Dolly, the diplodocid with lesions in its neck vertebrae (Woodruff et al. 2022; see previous posts on Dolly here and here). I was also intellectually excited, not only to see air-filled bones with obvious pathologies, but also for what those pathologies could tell us about Dolly and other sauropods. That’s the part of our new paper I want to unpack in this post.
I was at the SVP meeting in Albuquerque in 2018 when Cary Woodruff called me over and said he had something cool to show me. “Something cool” turned out to be photos of infected sauropod vertebrae from the Morrison Formation of Montana. Specifically, some gross, cauliflower-looking bony lesions bubbling up in the air spaces on the sides of the vertebrae.
This is super cool: my friend and lead author on the new saltasaur pneumaticity paper, Tito Aureliano, made a short (~6 min) video about the fieldwork that Aline Ghilardi and Marcelo Fernandes and their team — many of whom are authors on the new paper — have been doing in Brazil, and how it led to the discovery of a new, tiny titanosaur, and how that led to the new paper. It’s in Portuguese, but with English subtitles, just hit the CC button.
Well, this is a very pleasant surprise on the last day of the semester: Tito Aureliano, Aline M. Ghilardi, Bruno A. Navarro, Marcelo A. Fernandes, Fresia Ricardi-Branco, & Mathew J. Wedel. 2021. Exquisite air sac histological traces in a hyperpneumatized nanoid sauropod dinosaur from South America. Scientific Reports 11: 24207.
{.size-large .wp-image-19384 .aligncenter loading=“lazy” attachment-id=“19384” permalink=“http://svpow.com/2021/12/08/pneumatization-sites-how-does-air-get-into-vertebrae/sauropod-vertebra-nerves-and-vessels-color-sketch/” orig-file=“https://svpow.files.wordpress.com/2021/12/sauropod-vertebra-nerves-and-vessels-color-sketch.jpg” orig-size=“1504,2048” comments-opened=“1”
Two and a half years ago, I posted a glorious hemisected hen, taken (with permission) from a poster by Roberts et al. 2016, and supplied by Ray Wilhite, best known in this parish for his work on sauropod appendicular material. At the end of that post, I blithely promised “More from this poster in a subsequent post!”, and then — predictably — forgot all about it. My apologies.