Some people have asked me to comment on the Scientific American article What if We Never Find Dark Matter? by Slatyer & Tait. For the most part, I find it unobjectionable – from a certain point of view.
Some people have asked me to comment on the Scientific American article What if We Never Find Dark Matter? by Slatyer & Tait. For the most part, I find it unobjectionable – from a certain point of view.
I have said I wasn’t going to attempt to teach an entire graduate course on galaxy dynamics in this forum, and I’m not. But I can give some pointers for those who want to try it for themselves. It also provides some useful context for fans of Deur’s approach. The go-to textbook for this topic is Galactic Dynamics by Binney & Tremaine. The first edition was published in 1987, conveniently when I switched to grad school in astronomy.
I want to take another step back in perspective from the last post to say a few words about what the radial acceleration relation (RAR) means and what it doesn’t mean. Here it is again: This information was not available when the dark matter paradigm was developed. We observed excess motion, like flat rotation curves, and inferred the existence of extra mass. That was perfectly reasonable given the information available at the time.
In the previous post, we discussed how lensing data extend the Radial Acceleration Relation (RAR) seen in galaxy kinematics to very low accelerations. Let’s zoom out now, and look at things at higher accelerations and from a historical perspective.
A common refrain I hear is that MOND works well in galaxies, but not in clusters of galaxies. The oft-unspoken but absolutely intended implication is that we can therefore dismiss MOND and never speak of it again. That’s silly. Even if MOND is wrong, that it works as well as it does is surely telling us something.
To start the new year, I provide a link to a discussion I had with Simon White on Phil Halper’s YouTube channel: In this post I’ll say little that we don’t talk about, but will add some background and mildly amusing anecdotes. I’ll also try addressing the one point of factual disagreement. For the most part, Simon & I entirely agree about the relevant facts; what we’re discussing is the interpretation of those facts.
Screw the Earth and its smoking habit. The end of 2023 approaches, so let’s talk about the whole universe, which is its own special kind of mess. As I’ve related before, our current cosmology, LCDM, was established over the course of the 1990s through a steady drip, drip, drip of results in observational cosmology – what Peebles calls the classic cosmological tests. There were many contributory results;
People have been asking me about comments in a recent video by Sabine Hossenfelder. I have not watched it, but the quote I’m asked about is “the higher the uncertainty of the data, the better MOND seems to work” with the implication that this might mean that MOND is a systematic artifact of data interpretation.
People often ask me of how “perfect” MOND has to be. The short answer is that it agrees with galaxy data as “perfectly” as we can perceive – i.e., the scatter in the credible data is accounted for entirely by known errors and the expected scatter in stellar mass-to-light ratios. Sometimes it nevertheless looks to go badly wrong. That’s often because we need to know both the mass distribution and the kinematics perfectly.
In the series of recent posts I’ve made about the Milky Way, I missed an important reply made in the comments by Francois Hammer, one of the eminent scientists doing the work. I was on to writing the next post when he wrote it, and simply didn’t see it until yesterday. Dr. Hammer has some important things to say that are both illustrative of the specific topic and also of how science should work.