Physical SciencesWordPress.com

Triton Station

Triton Station
A Blog About the Science and Sociology of Cosmology and Dark Matter
Home PageAtom FeedMastodon
language
Published

The fine-tuning problem encountered by dark matter models that I talked about last time is generic. The knee-jerk reaction of most workers seems to be “let’s build a more sophisticated model.” That’s reasonable – if there is any hope of recovery. The attitude is that dark matter has to be right so something has to work out. This fails to even contemplate the existential challenge that the fine-tuning problem imposes.

Published

OK, basic review is over. Shit’s gonna get real. Here I give a short recounting of the primary reason I came to doubt the dark matter paradigm. This is entirely conventional – my concern about the viability of dark matter is a contradiction within its own context. It had nothing to do with MOND, which I was blissfully ignorant of when I ran head-long into this problem in 1994.

Published

There is a rule of thumb in scientific publication that if a title is posed a question, the answer is no. It sucks being so far ahead of the field that I get to watch people repeat the mistakes I made (or almost made) and warned against long ago. There have been persistent claims of deviations of one sort or another from the Baryonic Tully-Fisher relation (BTFR). So far, these have all been obviously wrong, for reasons we’ve discussed before.

Published

Science progresses through hypothesis testing. The primary mechanism for distinguishing between hypotheses is predictive power. The hypothesis that can predict new phenomena is “better.” This is especially true for surprising, a priori predictions: it matters more when the new phenomena was not expected in the context of an existing paradigm. I’ve seen this happen many times now. MOND has had many predictive successes.

Published

A surprising and ultimately career-altering result that I encountered while in my first postdoc was that low surface brightness galaxies fell precisely on the Tully-Fisher relation. This surprising result led me to test the limits of the relation in every conceivable way. Are there galaxies that fall off it? How far is it applicable?

Published

I read somewhere – I don’t think it was Kuhn himself, but someone analyzing Kuhn – that there came a point in the history of science where there was a divergence between scientists, with different scientists disagreeing about what counts as a theory, what counts as a test of a theory, what even counts as evidence. We have reached that point with the mass discrepancy problem.

Published

People seem to like to do retrospectives at year’s end. I take a longer view, but the end of 2020 seems like a fitting time to do that. Below is the text of a paper I wrote in 1995 with collaborators at the Kapteyn Institute of the University of Groningen. The last edit date is from December of that year, so this text (in plain TeX, not LaTeX!) is now a quarter century old. I am just going to cut & paste it as-was;

Published

This post is a recent conversation with David Garofalo for his blog. Today we talk to Dr. Stacy McGaugh, Chair of the Astronomy Department at Case Western Reserve University. David : Hi Stacy. You had set out to disprove MOND and instead found evidence to support it. That sounds like the poster child for how science works. Was praise forthcoming?