This is a follow up to my earlier post about C⩸N
+
, itself inspired by this ChemRxiv pre-print[cite]10.26434/chemrxiv.8009633.v1[/cite] which describes a chemical synthesis of singlet biradicaloid C
2
and its proposed identification as such by chemical trapping.
Authors David Danovich, Philippe C. Hiberty, Wei Wu, Henry S. Rzepa, Sason Shaik
AbstractDoes, or doesn’t C2 break the glass ceiling of triple bonding? This work provides an overview on the bonding conundrum in C2 and on the recent discussions regarding our proposal that it possesses a quadruple bond. As such, we focus herein on the main point of contention, the 4th bond of C2, and discuss the main views. We present new data and an overview of the nature of the 4th bond—its proposed antiferromagnetically coupled nature, its strength, and a derivation of its bond energy from experimentally based thermochemical data. We address the bond‐order conundrum of C2 arising from generalized VB (GVB) calculations by comparing it to HCCH, and showing that the two molecules behave very similarly, and C2 is in no way an exception. We analyse the root cause of the deviation of C2 from the Badger Rule, and demonstrate that the reason for the smaller force constant (FC) of C2 relative to HCCH has nothing to do with the bond energies, or with the number of bonds in the two molecules. The FC is determined primarily by the bond length, which is set by the balance between the bond length preferences of the σ‐ versus π‐bonds in the two molecules. This interplay in the case of C2 clearly shows the fingerprints of the 4th bond. Our discussion resolves the points of contention and shows that the arguments used to dismiss the quadruple bond nature of C2 are not well founded.
Authors Sason Shaik, David Danovich, Benoit Braida, Philippe C. Hiberty
AbstractEver since Lewis depicted the triple bond for acetylene, triple bonding has been considered as the highest limit of multiple bonding for main elements. Here we show that C2 is bonded by a quadruple bond that can be distinctly characterized by valence‐bond (VB) calculations. We demonstrate that the quadruply‐bonded structure determines the key observables of the molecule, and accounts by itself for about 90 % of the molecule's bond dissociation energy, and for its bond lengths and its force constant. The quadruply‐bonded structure is made of two strong π bonds, one strong σ bond and a weaker fourth σ‐type bond, the bond strength of which is estimated as 17–21 kcal mol−1. Alternative VB structures with double bonds; either two π bonds or one π bond and one σ bond lie at 129.5 and 106.1 kcal mol−1, respectively, above the quadruply‐bonded structure, and they collapse to the latter structure given freedom to improve their double bonding by dative σ bonding. The usefulness of the quadruply‐bonded model is underscored by “predicting” the properties of the 3
state. C2’s very high reactivity is rooted in its fourth weak bond. Thus, carbon and first‐row main elements are open to quadruple bonding!
Diatomic carbon (C2) is historically an elusive chemical species. It has long been believed that the generation of C2 requires extremely high “physical” energy, such as an electric carbon arc or multiple photon excitation, and so it has been the general consensus that the inherent nature of C2 in the ground state is experimentally inaccessible. Here, we present the first “chemical” synthesis of C2 in a flask at room temperature or below, providing the first experimental evidence to support theoretical predictions that (1) C2 has a singlet biradical character with a quadruple bond, thus settling a long-standing controversy between experimental and theoretical chemists, and that (2) C2 serves as a molecular element in the formation of sp2-carbon allotropes such as graphite, carbon nanotubes and C60.