Luke Horton asked in a comment on a recent post: Given the chance to examine a titanosaur cadaver with your hypothetical army of anatomists, what would you look for first? *FACEPALM* How we’ve gone almost 17 years without posting about a hypothetical sauropod dissection is quite beyond my capacity.
AbstractA new specimen of Haplocanthosaurus is described based on bones excavated from the Late Jurassic Dry Mesa Dinosaur Quarry near Delta, Colorado. The specimen consists of seven dorsal vertebrae and a right tibia and is identified as Haplocanthosaurus based on the dorsally angled transverse processes, tall neural arch peduncles, low parapophyses relative to the diapophyses in the posterior dorsal vertebrae, and the robustness of the tibia combined with a greatly expanded distal articular surface. The discovery adds to our understanding of the biostratigraphy of Haplocanthosaurus, showing this genus is definitively present in the Brushy Basin Member of the Morrison Formation, and making this individual the geologically youngest Haplocanthosaurus specimen on the Colorado Plateau. The identification of this genus adds to the known diversity of sauropods at Dry Mesa Dinosaur Quarry (DMDQ), which is at least six distinct genera, making DMDQ the most diverse single locality of sauropods in the Morrison Formation and the world.
AbstractIn this article, we document the widespread presence of bony ridges in the neural canals of non‐avian dinosaurs, including a wide diversity of sauropods, two theropods, a thyreophoran, and a hadrosaur. These structures are present only in the caudal vertebrae. They are anteroposteriorly elongate, found on the lateral walls of the canal, and vary in size and position both taxonomically and serially. Similar bony projections into the neural canal have been identified in extant teleosts, dipnoans, and urodelans, in which they are recognized as bony spinal cord supports. In most non‐mammals, the dura mater that surrounds the spinal cord is fused to the periosteum of the neural canal, and the denticulate ligaments that support the spinal cord can pass through the dura and periosteum to anchor directly to bone. The function of these structures in dinosaurs remains uncertain, but in sauropods they might have stabilized the spinal cord during bilateral movement of the tail and use of the tail as a weapon. Of broader significance, this study emphasizes that important new discoveries at the gross anatomical level can continue to be made in part by closely examining previously overlooked features of known specimens.