Published in Henry Rzepa's Blog

I have blogged before about the mechanism of this classical oxidation reaction. Here I further explore computed models, and whether they match the observed kinetic isotope effects (KIE) obtained using the natural-abundance method described in the previous post. There is much previous study of this rearrangement, and the issue can be reduced to deciding whether TS1 or TS2 is rate-limiting.

References

InChI=1S/C7H5ClO3.C7H5ClO2.C6H10O/c8-6-3-1-2-5(4-6)7(9)11-10;8-6-3-1-2-5(4-6)7(9)10;7-6-4-2-1-3-5-6/h1-4,10H;1-4H,(H,9,10);1-5H2BYCVAWRMVMFWSE-UHFFFAOYSA-N

C 20 H 20 Cl 2 O 6

Published
Authors Henry S Rzepa, Imperial College London, Imperial College London, Henry S Rzepa

# opt freq rwb97xd/6-311g(d,p) scrf=(cpcm,solvent=dichloromethane) geo

InChI=1S/C7H5ClO3.C7H5ClO2.C6H10O/c8-6-3-1-2-5(4-6)7(9)11-10;8-6-3-1-2-5(4-6)7(9)10;7-6-4-2-1-3-5-6/h1-4,9H;1-4H,(H,9,10);1-5H2IQLRYBQQLOYYNZ-UHFFFAOYSA-N

C 20 H 20 Cl 2 O 6

Published
Authors Henry S Rzepa, Imperial College London, Imperial College London, Henry S Rzepa

# opt(calcfc,ts,noeigentest,cartesian) freq rwb97xd/def2tzvpp scrf=(cp