Published in Henry Rzepa's Blog

One of the most fascinating and important articles dealing with curly arrows I have seen is that by Klein and Knizia on the topic of C-H bond activations using an iron catalyst.[cite]10.1002/anie.201805511[/cite] These are so-called high spin systems with unpaired electrons and the mechanism of C-H activation involves both double headed (two electron) and fish-hook (single electron) movement.

References

General ChemistryCatalysis

cPCET versus HAT: A Direct Theoretical Method for Distinguishing X–H Bond‐Activation Mechanisms

Published in Angewandte Chemie International Edition

AbstractProton‐coupled electron transfer (PCET) events play a key role in countless chemical transformations, but they come in many physical variants which are hard to distinguish experimentally. While present theoretical approaches to treat these events are mostly based on physical rate coefficient models of various complexity, it is now argued that it is both feasible and fruitful to directly analyze the electronic N‐electron wavefunctions of these processes along their intrinsic reaction coordinate (IRC). In particular, for model systems of lipoxygenase and the high‐valent oxoiron(IV) intermediate TauD‐J it is shown that by invoking the intrinsic bond orbital (IBO) representation of the wavefunction, the common boundary cases of hydrogen atom transfer (HAT) and concerted PCET (cPCET) can be directly and unambiguously distinguished in a straightforward manner.